Received: October 1, 1984; accepted: November 30, 1984

ON THE REACTIONS OF DIMETHYLSULFOXIDE WITH ACYL FLUORIDES - PUMMERER REARRANGEMENTS AND FORMATION OF MONOFLUOROMETHYL ESTERS

HORST G. LANGE AND JEAN'NE M. SHREEVE*

Department of Chemistry, University of Idaho, Moscow, ID 83843 (U.S.A.)

SUMMARY

In stoichiometry-dependent reactions, dimethylsulfoxide (DMSO) reacts with acyl fluorides, $R_fC(0)F$ (R_f = F, CF₃), to yield CH₃SCH₂F and $R_fC(0)OCH_2F$, while CH₃SCH₂Cl and FC(0)OCH₂Cl are obtained with COClF. Oxalyl difluoride, C₂O₂F₂, reacts with DMSO to give CH₃SCH₂F and FCH₂OCH₂F.

INTRODUCTION

Dimethylsulfoxide (DMSO) reacts with acyl chlorides [1] and other chlorinated Lewis acids, such as SiCl₄, BCl₃ [2], COCl₂ and PCl₅ [3], to yield CH₃SCH₂Cl as a result of the Pummerer rearrangement [4]. However, little is known about reactions of DMSO with fluorinated Lewis acids and no work has been done on reactions with acyl fluorides.

Boron trifluoride, WF₆ and SiF₄ are reported to yield complexes of DMSO [5-7]. The identification of CH₂FS(0)H among the numerous degradation products of the controlled fluorination of DMSO with IF₅ [8] was doubted, since a reaction with SF₄ yielded FCH₂OCH₂F [7], whose spectra appear to be almost identical to those reported for the DMSO-IF₅ product. The ether, FCH₂OCH₂F, is also produced in low yield by the reaction of WF₆ with DMSO [7]. Although no mechanistic work has been done on the reactions of DMSO with Lewis acids, the identification of CH₂F-containing products may indicate a Pummerer rearrangement to be responsible for inducing the fluorination.

Due to the ever increasing interest in organofluorine chemistry, there is a strong demand for inexpensive, easy and selective ways to introduce fluorine into organic molecules. For that reason we investigated the reactions of DMSO

0022-1139/85/\$3.30

© Elsevier Sequoia/Printed in The Netherlands

with COF_2 , COClF, $CF_3C(0)F$ and $C_2O_2F_2$ in an attempt to extend the applicability of the Pummerer rearrangement to the synthesis of monofluoromethylsulfides, i.e., the transformation of $RS(0)CH_3$ into $RSCH_2F$.

RESULTS AND DISCUSSION

When $COCl_2$ was reacted with DMSO, CH_3SCH_2Cl was formed [3]. Carbonyl chloride fluoride also gave only the latter sulfide with no trace of migration of fluorine. This is in keeping with greater mobility of chlorine. Reactions of COF_2 , $CF_3C(O)F$ and $C_2O_2F_2$ with DMSO proceeded smoothly at $25^{\circ}C$ without solvent to form CH_3SCH_2F as the Pummerer product. The fact that under the same conditions, DMSO is unreactive with $CH_3C(O)F$ or $C_6H_5C(O)F$ indicates that the presence of strong electrogenative substituents greatly facilitates the Pummerer rearrangement.

In a rather surprising reaction of diphenyl sulfoxide with SiCl₄, phenyl(p-chlorophenyl) sulfide was produced [2]. This appears to be a Pummerer-type reaction in spite of the absence of hydrogen in the position α to sulfur. Our attempts to react acyl fluorides with diphenylsulfoxide were not successful.

Although no by-product formation is reported from reactions of COCl₂ or other chlorinated Lewis acids with DMSO, we found that a variety of byproducts did form in the reactions of acyl fluorides. In addition to the expected methyl(monohalogenomethyl) sulfides, monohalogenomethylesters of the corresponding fluorocarboxylic acids were identified as important by-products. However, in the reaction of DMSO with oxalyl difluoride, we observed only FCH₂OCH₂F instead of an oxalic acid monofluoromethylester (Table 1).

Reactant stoichiometry controls the products formed. For example, in the reaction of DMSO with COF_2 relatively good yields of CH_3SCH_2F (70%) or $FC(0)OCH_2F$ (38%) are obtained by using a deficiency or excess of COF_2 , respectively. Notably, the stable $FC(0)OCH_2F$ combines the two very unstable molecules FC(0)OH and CH_2FOH .

A similar behavior is noted for reactions between $CF_3C(0)F$ or $C_2O_2F_2$ and DMSO as recorded in Table 1 and in the experimental section. Moreover, the reactions of COF_2 or $C_2O_2F_2$ with DMSO also result in the formation of a more highly fluorinated sulfide, CH_3SCHF_2 . It was impossible to increase the percentage yield of the latter or to form more highly fluorinated species, e.g., CH_3SCF_3 , regardless of the stoichiometry used.

R _f C(O)F DMSO R _f	Stoichiometric Ratio	<pre>Product(s)* (Yield and Rel. Distribution)</pre>
Cl	1:2	CH ₃ SCH ₂ Cl (59.2%)**
Cl	1:1	FC(0)OCH ₂ Cl (27.6%), CH ₃ SCH ₂ Cl,
		CH ₃ SSCH ₃ (0.51:0.76:1)
Cl	2:1	FC(0)OCH ₂ Cl (42.3%), CH ₃ SCH ₂ Cl
F	1:2	CH ₃ SCH ₂ F (70%), CH ₃ SSCH ₃ (tr.)
F	1:1	$FC(0)OCH_2F$ (17.4%), CH_3SCH_2F ,
		CH ₃ SCHF ₂ (1:0.17:0.05)
F	2:1	$FC(0)OCH_2F$ (38.4%), FCH_2OCH_2F , CH_3SCHF_2 ,
		CH ₃ SC(0)F (1:0.17:0.14:0.08)
CF3	1:2	CH_3SCH_2F , $CF_3C(0)OCH_2F$ (0.86:1)
CF3	1:1	CF ₃ C(0)OCH ₂ F (16.3%), CH ₃ SSCH ₃ (1:0.41)
CF3	2:1	$CF_{3}C(0)OCH_{2}F$ (34.0%)
FC(0)	1:2	CH ₃ SCH ₂ F (74.7%)
FC(O)	1:1	CH ₃ SCH ₂ F, FCH ₂ OCH ₂ F, CH ₃ SCHF ₂ (1:0.67:0.13)
FC(Q)	2:1	FCH_2OCH_2F , CH_3SCH_2F , CH_3SCHF_2 , CH_3SSCH_3
		(1:0.29:0.16:0.05)

Table 1 Major products identified in the reactions of DMSO with acyl fluorides, $R_{\rm p} C(0) F$

* For trace products, see experimental section.

** Percentage yield for isolated compound; rel. distribution taken from 1 H, 19 F-NMR spectra before separation.

Although it is difficult to propose a reaction sequence from such a complicated set of reaction products, with the issue being further complicated by the low overall yields observed in several cases, some general remarks can be made. The following two reaction steps could easily explain the observed major products:

$$\begin{array}{cccc} CH_{3}S(0)CH_{3} + R_{f}C(0)F & \qquad & CH_{3}SCH_{2}F + R_{f}C(0)OH & \qquad & (1) \\ CH_{3}SCH_{2}F + R_{f}C(0)OH & \qquad & CH_{3}SH + R_{f}C(0)OCH_{2}F & \qquad & (2) \\ R_{f} = F, CF_{3} & \qquad & \end{array}$$

Methanethiol may cause the formation of several by-products in a wellknown manner:

However, CH₃SH was not detected regardless of the stoichiometric ratio $DMSO/R_fC(0)F$ employed. Due to the extreme instability of FC(0)OH, it is not possible to check the crucial step (2) by reacting this acid with CH_3SCH_2F . However, $CF_3C(0)OH$ reacted with CH_3SCH_2F to yield $CF_3C(0)OCH_2SCH_3$ and HF. An analogous reaction was observed with $(CF_3CO)_2O$.

No products formed by C-S cleavage were found. Thus CH_3SCH_2F shows the usual behavior of other halogenomethylsulfides, e.g. CH_3SCH_2Cl , reacting by heterolytic cleavage of the carbon-halogen bond:

 $(CF_{3}CO)_{2}O + FCH_{2}SCH_{3} \longrightarrow CF_{3}C(O)OCH_{2}SCH_{3} + CF_{3}C(O)F$

These results do not allow a simple explanation of CH_2F -ester formation due to S-CH₂F cleavage by an acid or an acid anhydride. Presently the very surprising formation of monofluoromethylester in the reaction of COF_2 or $CF_3C(O)F$ is not fully understood.

Small amounts of FCH₂OCH₂F and ClCH₂OCH₂Cl (see experimental section) which accompany the formation of halogenomethylesters may be due to the extreme sensitivity of these esters toward protolysis. The unstable alcohols FCH₂OH and ClCH₂OH, which result from acid-catalyzed ester cleavage, are known to undergo readily acid-catalyzed self-condensation to yield the corresponding ethers [12].

EXPERIMENTAL

General

Infrared spectra were recorded with a Perkin-Elmer 599B spectrometer using a 10 cm cell fitted with KBr windows. ¹H and ¹⁹F NMR spectra were obtained on a Varian EM 360L NMR spectrometer. CDCl₃ was used as a solvent, CCl_3F and TMS were used as internal references. Chemical shifts upfield from the reference signal are assigned negative values. GC/MS and MS spectra were recorded with a VG 7070 HS mass spectrometer.

Materials

DMSO (Baker) was dried using activated molecular sieves (3 Å), and checked for any CH₃SCH₃ content by GC prior to its use. COF₂, COC1F, CF₃COF (PCR) and C₂O₂F₂ (Hynes) were used as received. (CF₃CO)₂O was prepared from CF₃C(O)OH (Pfaltz and Bauer) using the literature method [13].

Experimental procedure

All reactions of DMSO with acyl fluorides were carried out at room temperature using stainless steel Hoke cylinders. No solvent was used. Reaction time 12 h, molar ratios DMSO/acyl fluoride 1:1 (gives usually mixtures of sulfide and ester), 2:1 (favors sulfide formation) and 1:2 (favors ester formation).

The calculated amount of $R_{f}C(0)F$ ($R_{f} = Cl, F, CF_{3}, COF$) was condensed onto 3 mL (3.29 g \cong 42 mmol) DMSO. For DMSO/R_fC(0)F \cong 2:1, 6 mL (~82 mmol) DMSO was used. After warming up to room temperature, the reaction mixture was shaken for 12 h. Using standard vacuum line techniques, partial product separation was achieved by passing the volatiles through traps maintained at -40°, -60°, -78° and -196°C. CH3SCH2F stops at -60°C. FC(0)0CH2F, $CF_{3}C(0)OCH_{2}F$ and $FC(0)OCH_{2}Cl$ were collected at $-78^{\circ}C$ and purified by repeated low temperature fractionation. After separation the purity of CH3SCH2F and the esters was established by ${}^{1}\text{H}$ and ${}^{1}9\text{F}$ NMR spectroscopy. The esters are colorless, mobile, extremely moisture sensitive liquids which are readily volatile at room temperature. They decompose slowly on standing in glass vessels at room temperature but are conveniently stored at -78°C. All products have been identified using ¹H and/or ¹⁹F NMR, IR and GC/MS spectroscopy. The spectroscopic data for the new esters are given below. The spectral properties of the other compounds agree with those already published. Yields of the esters are based on DMSO consumed. Yields of CH3SCH2X are based on RfC(0)F. Relative product distribution of fluorinated compounds is given in brackets [].

224

Reactions of DMSO with COClF (stoichiometric ratio)

a) DMSO/COC1F ≅ 1:1

Approximately 2.0 g of a colorless liquid was collected in the trap at -78°C. ¹H and ¹⁹F NMR and GC/MS spectra showed that it consisted mainly of FC(0)OCH₂Cl, CH₃SCH₂Cl and CH₃SSCH₃ [rel. distribution 0.51:0.76:1] together with minor amounts of ClCH₂OCH₂Cl, CH₃SC(0)Cl, CH₃SC(0)F, CH₃SCH₂SCH₃ and CH₃SCH₃. Repeated low temperature fractionation gave 1.3 g of FC(0)OCH₂Cl (27.6% yield). No fluorine containing sulfide was detected.

b) DMSO/COC1F ≆ 2:1

2.4 g CH₃SCH₂Cl (\cong 59.2% yield) was obtained in the trap at -40°C.

c) DMSO/COC1F \cong 1:2

2.5 g FC(0)OCH₂Cl was collected in the trap at -78°C. ¹H NMR spectra showed major impurities to be CH₃SSCH₃ and CH₃SCH₂Cl. Repeated low temperature fractionation gave 2.0 g of pure FC(0)OCH₂Cl (42.3% yield).

d) Spectral data for FC(0)OCH₂Cl

¹⁹F: $\emptyset(C(0)\underline{F}) = -18.0 \text{ ppm (s)}; {}^{1}\text{H} \delta(0\underline{CH}_{2}C1) = 5.80 \text{ ppm (s)}$ IR (gas, 20 torr): 3000 w, 2920 w, 1860 vs, 1450 w, 1350 m, 1270 s, 1230 vs, 1070 s, 1025 m, 905 m, 565 m, cm⁻¹.

MS (15 eV): M⁺ 112 (0.44); M⁺-CO 84 (2.62); M⁺-Cl 77 (100); M⁺-COF 65 (56.13); CH₂Cl⁺ 49 (87.47); COF⁺ 47 (63.80); correct ^{35/37} Cl isotopic pattern.

Reaction of DMSO with COF₂ (stoichiometric ratio)

a) DMSO/COF₂ \cong 1:1

A colorless liquid (1.7 g) was collected in the trap at -78° C. It consisted of FC(0)OCH₂F, CH₃SCH₂F and CH₃SCHF₂ [rel. distribution 1:0.17:0.05] as well as traces of CH₃SC(0)F. The traps at -60° and -40° C contained mainly CH₃SSCH₃ contaminated with small amounts of CH₃SCH₃. Repeated low temperature fractionation yielded 0.7 g pure FC(0)OCH₂F (17.4% yield).

b) $DMSO/COF_2 \cong 2:1$

Low temperature fractionation yielded 2.35 g CH_3SCH_2F (70% yield), which was collected in the trap at -60°C. Only minor amounts of CH_3SSCH_3 were identified in the trap at -40°C.

c) $DMSO/COF_2 \cong 1:2$

A colorless liquid (2.31 g) was obtained in the trap at -78° C. It consisted of FC(0)OCH₂F, FCH₂OCH₂F, CH₃SCHF₂ and CH₃SC(0)F [rel. distribution 1:0.17:0.14:0.08]. Repeated low temperature fractionation gave 1.55 g of pure FC(0)OCH₂F (38.4% yield). The trap at -60° C contained CH₃SSCH₃ along with minor amounts of CH₃SCH₃.

d) Spectral data for FC(0)OCH₂F

```
<sup>19</sup>
F: Ø(C(O)F) = -19.1 ppm (d); Ø(OCH<sub>2</sub>F) = -159.7 ppm (td)
<sup>1</sup>H: \delta(OCH_2F) = 5.81 ppm (d); <sup>2</sup>J (F,H) = 50 Hz, <sup>4</sup>J (F,F) = 4.1 Hz
IR (gas, 20 torr): 3000 m, 2940 w, 1860 vs, 1285 sh, 1250 vs, 1185 m, 1065
vs, 1030 s, 925 m, 785 m, 740 w, 605 m, cm<sup>-1</sup>.
MS (15 eV): M<sup>+</sup> 96 (0.17); M<sup>+</sup>-H 95 (5.61); M<sup>+</sup>-F 77 (5.61); M<sup>+</sup>-CH<sub>2</sub>F 63 (2.81);
M^+-CO<sub>2</sub> 52 (0.17); CH<sub>2</sub>FO<sup>+</sup> 49 (100); COF<sup>+</sup> 47 (33.23)
      e) Spectral data for CH<sub>3</sub>SCH<sub>2</sub>F [13]
^{19}F: \phi(CH_2F) = -189.7 \text{ ppm (tg)}
<sup>1</sup>H: \delta(CH_3) = 2.20 \text{ ppm} (d); {}^{4}J(F,H) = 2.0 \text{ Hz}
      \delta(CH_{2}F) = 5.60 \text{ ppm (d)}; ^{2}J(F,H) = 52 \text{ Hz}
MS (70 ev): M^+ 80 (100); M^+-H 79 (19.4); M^+-CH<sub>3</sub> 65 (58.5);
M<sup>+</sup>-F 61 (7.2); M<sup>+</sup>-H-HF 59 (16.60); correct <sup>34</sup>S isotopic pattern.
      f) Spectral data for CH<sub>3</sub>SCHF<sub>2</sub> [14]
^{19}F: \phi(CHF<sub>2</sub>) = -97.3 ppm (d)
<sup>1</sup>H: \delta(CHF_2) = 6.78 \text{ ppm}(t); ^2J(F,H) = 57 \text{ Hz}
      \delta(CH_3) = 2.30 \text{ ppm (s)}
MS: M<sup>+</sup> 98 (100); M<sup>+</sup>-CH<sub>3</sub> 83 (15.1); FCS<sup>+</sup> 63 (5.9); CHF<sub>2</sub><sup>+</sup> 51 (44.9); correct <sup>34</sup>S
isotopic pattern.
```

Reaction of DMSO with CF3COF (stoichiometric ratio)

```
a) DMSO/CF<sub>3</sub>COF \cong 1:1
```

A colorless mixture (1.60 g) of CF₃C(0)OCH₂F and CH₃SSCH₃ with traces of CH₃SCH₃ were obtained in the trap at -78°C. The distribution ester/disulfide was 1:0.41. Repeated low temperature fractionation gave 1.0 g of pure CF₃C(0)OCH₂F (16.3% yield). Traps at -60°C and -40°C contained increasing amounts of CH₃SSCH₃ in addition to only small amounts of ester. No CH₃SCH₂F, CH₃SCH₂ or FCH₂OCH₂F were identified.

b) DMSO/CF₃COF \cong 2:1

The contents of the trap at -78°C (2.4 g) showed CH₃SCH₂F in addition to considerable amounts of CF₃C(0)OCH₂F (rel. distribution 0.86:1). Besides CH₃SCH₂F, small amounts of CH₃SSCH₃ and CH₃SCH₃ were identified in the trap maintained at -60°C.

c) DMSO/CF₃COF \cong 1:2

In the trap at -78 °C, 2.6 g CF₃C(0)OCH₂F (containing CH₃SSCH₃ as a slight impurity) was collected. Repeated low temperature fractionation gave 2.08 g of pure CF₃C(0)OCH₂F (34% yield). No CH₃SCH₂F was identified.

d) Spectral data for $CF_3C(0)OCH_2F$ $1^9F: \emptyset(\underline{CF_3CO}) = -76.7 \text{ ppm (s)}, \emptyset(OCH_2F) = -161.0 \text{ ppm (t)}$ $^1H: (O\underline{CH}_2F) = 5.93 \text{ ppm (d)}; ^2J (F,H) = 50 \text{ Hz}$ IR (gas, 20 torr): 3000 mw, 2940 m, 1815 vs, 1350 m, 1245 vs, 1190 vs, 1125 vs, 1075 vs, 1015 vs, 830 w, 780 w, 740 w, cm⁻¹. MS (CI): M⁺ +H 147 (0.25); M⁺-H 145 (0.25); M⁺-OH 129 (2.64); M⁺-F 127 (8.31); M⁺-CHF 115 (5.37); M⁺-COF 100 (9.60); M⁺-HCOF 99 (100); CF_3CO⁺ 97 (23.08); M⁺-CF_3 77 (4.46); CF_3⁺ 69 (57.34); OCOF⁺ 63 (100).

Reaction of DMSO with C202F2 (stoichiometric ratio)

a) $DMSO/C_2O_2F_2 \cong 1:1$

A colorless liquid (2.2 g) was obtained in the trap at -78°C. It consisted of CH₃SCH₂F, FCH₂OCH₂F, CH₃SCHF₂ [rel. distribution 1:0.67:0.13], small amounts of CH₃SSCH₃ and traces of CH₃SCH₃ and CH₃SC(0)F.

b) $DMSO/C_2O_2F_2 \cong 2:1$

Collected in the trap at -78° C was 2.9 g CH₃SCH₂F (slightly contaminated with CH₃SSCH₃ and CH₃SCH₃). Repeated low temperature fractionation gave 2.50 g of pure CH₃SCH₂F (74.7% yield).

c) $DMSO/C_2O_2F_2 \cong 1:2$

In the trap at -78° C, 2.1 g of a mixture of FCH₂OCH₂F, CH₃SCH₂F, CH₃SCHF₂ and CH₃SSCH₃ [rel. distribution 1:0.29:0.16:0.05]. Traces of CH₃SCH₃ and CH₃SC(0)F were identified as minor impurities. Traps at -60° and -40° C contained only CH₃SSCH₃.

Reaction of CH3SCH2F with CF3COOH

Equimolar amounts of CH_3SCH_2F (0.8 g, ~10 mmol) and $CF_3C(0)OH$ were mixed and stirred for 20 min at 0°C. Slow distillation at 40°C/10⁻² torr yields 1.65 g pure $CF_3C(0)OCH_2SCH_3$ as a colorless, moisture sensitive liquid (95% yield).

Reaction of CH3SCH2F with (CF3CO)20

A mixture of 0.8 g CH₃SCH₂F (~10 mmol) and 2.31 g (CF₃CO)₂O (~11 mmol) was stirred for 30 min at 0°C. CF₃C(0)F was identified by comparing IR and ¹⁹F NMR spectra with authentic material. CF₃C(0)F and excess (CF₃CO)₂O were removed at -20° C/10⁻² torr affording a quantitative yield of CF₃C(0)OCH₂SCH₃.

226

Spectral data for CF3C(0)OCH2SCH3

ACKNOWLEDGEMENT

H. G. L. is grateful to the Heinrich-Hertz-Stiftung des Landes Nordrhein-Westfalen/West-Germany. Acknowledgment is expressed to the donors of the Petroleum Research Fund, administered by the American Chemical Society and to the National Science Foundation (Grant_CHE-8100156) for the support of this research. Dr. G. D. Knerr obtained the mass spectra.

REFERENCES

- 1 E.H. Amono-Neizer, S.K. Ray, R.A. Shaw and B.C. Smith, <u>J. Chem. Soc.</u> (1961), 3224.
- 2 M.F. Lappert and J.K. Smith, J. Chem. Soc. (1961), 3224.
- 3 J.R. Gauvreau, S. Poignant and G.J. Martin, <u>Tetrahedron Lett.</u>, <u>21</u>, (1980), 1319.
- 4 E. Block, 'Reactions of Organosulfur Compounds', Academic Press, New York, 1978, pp. 154.
- 5 R.G. Laughlin, J. Org. Chem., 25, (1960), 864.
- 6 V. Gutmann and K. Utvary, Monatsh., 90, (1959), 706.
- 7 J.I. Darragh, A.M. Noble, D.W.A. Sharp and J.M. Winfield, <u>J. Inorg.</u> Nucl. Chem., <u>32</u>, (1970), 1745.
- 8 E.W. Lawless and G.J. Hennon, Tetrahedron Lett., 58, (1968), 6075.
- 9 G.A. Olah, S.J. Kuhn and R.E.A. Dear, <u>J. Am. Chem. Soc.</u>, <u>87</u>, (1965), 1317.
- 10 L. Field, in S. Oae (ed.), 'Organic Chemistry of Sulfur,' Plenum Press, New York, 1977, p. 303.
- 11 A. Schoeberl and A. Wagner in Houben-Weyl (ed.), 'Methoden der Organischen Chemie,' Georg Thieme, Stuttgart 1955, Vol.'Schwefel-, Selen- und Tellur- Verbindungen,' p. 204.
- 12 G.A. Olah, S. Yu, G. Liang, G.D. Matseescu, M.R. Bruce, D.J. Donovan and M. Arvanaghi, J. Org. Chem., 46 (1981), 571.
- 13 R.K. Marat and A.F. Janzen, Can. J. Chem., 55, (1977), 3031.
- 14 J. Hine and J.J. Porter, J. Am. Chem. Soc., 82, (1960), 6118.